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Abstract
Monte Carlo Tree Search (MCTS) is a fam-
ily of directed search algorithms that has gained
widespread attention in recent years, with its
domain-independent nature making it particularly
attractive to fields such as General Game Playing.
Despite the vast amount of research into MCTS,
the dynamics of the algorithm are still not yet
fully understood. In particular, the effect of us-
ing knowledge-heavy or biased rollouts in MCTS
still remains largely unknown, with surprising re-
sults demonstrating that better-informed rollouts do
not necessarily result in stronger agents. We show
that MCTS is well-suited to a class of domains pos-
sessing a smoothness property, and that any error
due to incorrect bias is compounded in non-smooth
domains, particularly for low-variance simulations.

1 Introduction
Monte Carlo Tree Search (MCTS) has found great success
in a number of seemingly unrelated applications, ranging
from Bayesian reinforcement learning [Guez et al., 2013]
to Ms Pac-Man [Pepels et al., 2014]. Originally developed
to tackle the game of Go [Coulom, 2007] , it is often ap-
plied to domains for which only low-quality heuristics exist.
MCTS combines a traditional tree search with Monte Carlo
simulations (also known as rollouts), and uses the outcome
of these simulations to evaluate states in a lookahead tree.
That MCTS requires neither expert knowledge nor heuristics
makes it a powerful general-purpose approach, particularly
relevant to tasks such as General Game Playing [Genesereth
et al., 2005]. It has also shown itself to be a flexible plan-
ner, recently combining with deep neural networks to achieve
super-human performance in the game of Go [Silver et al.,
2016].

While many variants of MCTS exist, the UCT (Upper
Confidence bound applied to Trees) algorithm [Kocsis and
Szepesvári, 2006] is widely used in practice, despite its short-
comings [Domshlak and Feldman, 2013]. A great deal of
analysis on UCT revolves around the tree-building phase of
the algorithm, which provides theoretical convergence guar-
antees and upper-bounds on the regret [Coquelin and Munos,
2007]. Less is known about the simulation phase.

UCT calls for this phase to be performed by randomly se-
lecting actions until a terminal state is reached. The outcome
of the simulation is then propagated to the root of the tree.
Averaging these results over many iterations provides a fairly
accurate measure of the strength of the initial state, despite
the fact that the simulation is completely random. As the out-
come of the simulations directly affects the entire algorithm,
one might expect that the manner in which they are performed
has a major effect on the overall strength of the algorithm.

A natural assumption to make is that completely random
simulations are not ideal, since they do not map to realistic
actions. A different approach is that of so-called heavy roll-
outs, where moves are intelligently selected using domain-
specific rules or knowledge. Counterintuitively, some results
indicate that using these stronger rollouts can actually result
in a decrease in overall performance [Gelly and Silver, 2007].

While UCT is indeed domain-independent, it cannot be
simply seen as a panacea—Ramanujan et al. [2011] demon-
strates its poor performance in chess, for example. Coupled
with the above results regarding heavy playouts, this raises
two questions: when is UCT a good choice of algorithm and
what is the effect of non-uniformly random rollouts?

There are a number of conflating factors that make
analysing UCT in the context of games difficult, especially in
the multi-agent case. These include the strength of our oppo-
nents and whether they adapt their policies in response to our
own, as well as the additional complexity of the rollout phase,
which now requires policies for multiple players. Aside from
Silver and Tesauro [2009] who propose the concept of sim-
ulation balancing to learn a Go rollout policy that is weak
but “fair” to both players, there is little to indicate how best
to simulate our opponents. Furthermore, the vagaries of the
domain itself can often add to the complexity—Nau [1983]
demonstrates how making better decisions throughout a game
does not necessarily result in the winning rate that should be
expected. Given all of the above, we choose to simplify mat-
ters by restricting our investigation to the single-agent case.

We propose that a key characteristic of a domain is its
smoothness, and then demonstrate that UCT is well-suited to
domains possessing this property. We provide results which
show that biased rollouts can indeed improve performance,
but identify high-bias, low-variance rollout policies as poten-
tially dangerous choices that can lead to worse performance.
This is further compounded in non-smooth domains.



2 Background
2.1 Markov Decision Process
A Markov Decision Process (MDP) is defined by the tuple
〈S,A, T,R, γ〉 over states S, actions A, transition function
T : S×A×S → [0, 1], reward functionR : S×A×S → R
and discount factor γ ∈ (0, 1) [Sutton and Barto, 1998].

Suppose that after time step t we observe the sequence of
rewards rt+1, rt+2, rt+3, . . . For episodic tasks, a finite num-
ber of rewards will be observed. In general, we wish to max-
imise our expected return E[Rt], whereRt =

∑N
i=1 γ

i−1rt+i
represents the discounted sum of the rewards.

A policy π : S × A → [0, 1] is a mapping that specifies
the probability of executing an action in a given state. For a
policy π, the value of a state is the expected reward gained by
following π:

V π(s) = Eπ[Rt | st = s].

A policy π∗ is optimal if ∀s ∈ S, V π
∗
(s) = max

π
V π(s).

2.2 Monte Carlo Tree Search
MCTS iteratively builds a search tree by executing four
phases (Figure 1). Each node in the tree represents a sin-
gle state, while the tree’s edges correspond to actions. In the
selection phase, a child-selection policy is recursively applied
until a leaf node is reached.

(a) Selection (b) Expansion (c) Simulation (d) Backpropagation

Figure 1: Phases of the Monte Carlo tree search algorithm.
A search tree, rooted at the current state, is grown through
repeated application of the above four phases.

UCT uses a policy known as UCB1, a well-known solu-
tion to the multi-armed bandit problem [Auer et al., 2002].
At each state s, we store the visitation count ns and average
return Xs. For a given node s, the policy then selects child i
that maximises the upper confidence bound

Xi + Cp

√
2 ln(ns)

ni
,

where Cp is an exploration parameter.
Once a leaf node is reached, the expansion phase adds a

new node to the tree. A simulation is then run from this node
according to the playout policy, with the outcome being back-
propagated up through the tree, updating the nodes’ average
scores and visitation counts.

This cycle of selection, expansion, simulation and back-
propagation is repeated until some halting criteria is met, at
which point the best action (usually that which leads to the
most visited state) is selected.

2.3 Smoothness
There is some evidence to suggest that the key property of a
domain is the smoothness of its underlying value function.
The phenomenon of game tree pathology [Nau, 1982], as
well as work by Ramanujan et al. [2011], advance the no-
tion of trap states, which occur when the value of two sibling
nodes differs greatly. It is thought that UCT is unsuited to
domains possessing many such states. Furthermore, in the
context of X -armed bandits (where X is some measurable
space), UCT can be seen as a specific instance of the Hier-
archical Optimistic Optimisation algorithm, which attempts
to find the global maximum of the expected payoff function
using MCTS. Its selection policy is similar to UCB1, but con-
tains an additional term that depends on the smoothness of the
function. For an infinitely smooth function, this term goes to
0 and the algorithm becomes UCT [Bubeck et al., 2011].

In defining what is meant by smoothness, one notion that
can be employed is that of Lipschitz continuity, which limits
the rate of change of a function. Formally, a value function V
is M -Lipschitz continuous if ∀s, t ∈ S,

|V (s)− V (t)| ≤Md(s, t),

where M ≥ 0 is a constant, d(s, t) = ‖k(s)− k(t)‖ and k is
a mapping from state space to some vector space.

3 Function Optimisation
Reasoning about the smoothness (or lack thereof) of an MDP
is difficult for all but the vaguest of statements. To develop
some method of controlling and visualising the smoothness,
we consider the task of finding the global maximum of a func-
tion. Simple, monotonic functions can be seen as represent-
ing smooth environments, while complicated ones represent
non-smooth domains.

For simplicity, we constrain the domain and range of the
functions to be in the interval [0, 1]. Each state represents
some interval [a, b] within this unit square, with the starting
state representing [0, 1]. We assume that there are two avail-
able actions at each state: the first results in a transition to the
new state [a, a+b2 ], while the second transitions to [a+b2 , b].
This approach forms a binary tree that covers the entire state-
space. As this partitioning could continue ad infinitum, we
truncate the tree by considering a state to be terminal when
b− a ≤ 10−5.

In the simulation phase, actions are executed uniformly
randomly until a leaf is encountered, at which point some
reward is received. Let f be the function and c be the
midpoint of the leaf reached by the rollout. At iteration
t, a binary reward rt, drawn from a Bernoulli distribution
rt ∼ Bern (f(c)), is generated.

At the completion of the algorithm, we calculate the score
by descending the game tree from root to leaf (where a leaf
node is a node that has not yet been fully expanded), selecting
at each state its most visited child. The centre of the leaf
node’s interval represents UCT’s belief of the location of the
global maximum.

To illustrate UCT’s response to smoothness, consider
two functions f(x) = 4x(1 − x) and g(x) =
max (3.6x(1− x), 1− 10|0.9− x|). f has a single global



Number of Simulations
Function 500 1000 5000 10000 20000 50000 100000

f 1± 0.001 1± 0.001 1± 0.0 1± 0.0 1± 0.0 1± 0.0 1± 0.0
g 0.89± 0.002 0.90± 0.002 0.94± 0.002 0.95± 0.002 0.96± 0.001 0.96± 0.001 0.97± 0.001
h 1± 0.0 1± 0.0 1± 0.0 1± 0.0 1± 0.0 1± 0.0 1± 0.0
j 0.60± 0.012 0.62± 0.007 0.65± 0.003 0.66± 0.003 0.67± 0.002 0.67± 0.002 0.68± 0.002

Table 1: Average maximum value found by UCT for the functions f, g, h and j, averaged over 100 runs.

maximum at x = 0.5, while g has a local maximum at the
same point, and a global maximum at x = 0.9. Despite the
fact that both functions are relatively simple, UCT occasion-
ally fails to find the true optimal value, as illustrated by the
first two rows of Table 1.

To see why this occurs, consider an additional two func-
tions which are far more complex: h(x) = | sin 1

x5 | and

j(x) =

{
1
2 + 1

2 | sin
1
x5 | if x < 1

2
7
20 + 1

2 | sin
1
x5 | if x ≥ 1

2

.

Notice that the frequency of the function h decreases as
x increases. Since the function attains a maximum at many
points, we can expect UCT to return the correct answer fre-
quently. Visiting an incorrect region of the domain here is
not too detrimental, since there is most likely still a state that
attains the maximum in the interval.

With that said, there is clearly a smoother region of the
space that can be searched. In some sense, this is the more
conservative space, since a small perturbation does not result
in too great a change in value. Indeed, UCT prefers this re-
gion (Figure 2a), with the leaf nodes concentrating around
this smooth area despite there being many optima at x ≤ 0.5.

On the other hand, the function j is a tougher proposition,
despite having the same number of critical points as h. Here,
the “safer” interval of the function’s domain (at x ≥ 0.5)
preferred by UCT is now suboptimal. In this case, UCT finds

it difficult to make the transition to the true optimal value,
since it prefers to exploit the smoother, incorrect region.

After a sufficient number of simulations, however, UCT
does indeed start to visit the optimal region of the graph
(Figure 2b). Since the value of nearby states in this region
changes rapidly, robust estimates are required to find the true
optimum. For function j, UCT achieves an average score
lower than even that of the local maxima. This suggests
that the search spends time at the suboptimal maxima before
switching to the region x < 0.5. However, because most of
the search had not focused on this space previously, its esti-
mates are inadequate, which results in very poor returns.

4 Bias in the Simulation Phase
Having demonstrated the effect of the domain’s smoothness
on UCT, we now turn our attention to heavy rollouts. Often-
times rollouts that are not uniformly random are referred to
as biased rollouts. Since the simulation phase is a substitute
for the value function, almost all policies suffer from some
bias, even uniformly random ones. As this applies to both
deterministic and random rollouts—policies at opposite ends
of the spectrum—it is important to differentiate between the
two.

To draw an analogy, consider Bayesian inference. Here a
prior distribution, which represents the knowledge injected
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(a) Percentage of visits to leaves after 50 000 iterations of UCT for
the function h.
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(b) Percentage of visits to leaves after 50 000 iterations of UCT for
the function j.

Figure 2: The percentage of total visits assigned to each leaf node, averaged over 100 runs. A scaled version of h and j is
overlaid for reference. For illustration purposes, leaves are grouped into 1000 buckets, with the sum of the visits to leaves in
each bucket plotted.



into the system, is modified by the evidence received from
the environment to produce a posterior distribution. Argu-
ments can be made for selecting a maximal entropy prior—
that is, a prior that encodes the minimum amount of infor-
mation. Based on this principle of indifference, the posterior
that is produced is directly proportional to the likelihood of
the data.

Selecting a prior distribution that has small variance, for in-
stance, has the opposite effect. In this case, far more data will
need to be observed to change it significantly. Thus, a prior
with low entropy can effectively overwhelm the evidence re-
ceived from the environment. If such a prior is incorrect, this
can result in a posterior with a large degree of bias.

Uncertainty in a domain arises from the fact that we are
unaware of the true policy being used by an agent. This is
especially true beyond the search tree’s horizon, where there
exist no value estimates. The simulation phase is thus re-
sponsible for managing this extreme uncertainty. The choice
of rollout policy can therefore be viewed as a kind of prior
distribution over the policy space—one which encodes the
user’s knowledge of the domain, with uniformly random roll-
outs representing maximal entropy priors, and deterministic
rollouts minimal ones.

To illustrate the advantage of selecting a high-entropy sim-
ulation policy, we consider biasing simulations for the func-
tion optimisation task by performing a one-step lookahead
and selecting an action proportional to the value of the next
state. We also consider an inversely-biased policy which se-
lects an action in inverse proportion to its value.

The choice of rollout policy affects the initial view MCTS
has of the function to be optimised. The figures in Fig-
ure 3 demonstrate this phenomenon for the random, biased
and inversely-biased policies when optimising the function

y(x) =
| sin(5πx) + cos(x))|

2
.

Random rollouts perfectly represent the function, since
their expected values depend only on the function’s value it-
self, while the biased policy assigns greater importance to the
region about the true maximum, but does not accurately rep-
resent the underlying function. This serves to focus the search
in the correct region of the space, as well as effectively prune
some of the suboptimal regions. This is not detrimental here
since the underestimated regions do not contain the global

maximum. Were the optimal value to exist as an extreme
outlier in the range [0.5, 1], then the policy would hinder the
ability of MCTS to find the true answer, as it would require a
large number of iterations to correct this error. A sufficiently
smooth domain would preclude this event from occurring.

Finally, the last figure demonstrates how an incorrectly bi-
ased policy can cause MCTS to focus initially on a com-
pletely suboptimal region. Many iterations would thus be re-
quired to redress the serious bias injected into the system.

5 Risky Simulation Policies
To illustrate the possible risk in selecting the incorrect sim-
ulation policy, consider a perfect k-ary tree which represents
a generic extensive-form game of perfect information. Ver-
tices represent the state-space, and edges the action-space, so
that A(s) = {0, 1, . . . , k − 1}. Rewards in the range [0, 1]
are assigned to each leaf node such that ∀s, π∗(s, bk2 c) = 1.
For non-optimal actions, rewards are distributed randomly. A
k-ary tree of height h is referred to as a [k, h] tree henceforth.

A uniformly random rollout policy πrand acts as a baseline
with which to compare the performance of other simulation
policies. These policies sample an action from normal dis-
tributions with varying mean and standard deviation—that is,
policies are parameterised by β ∼ N (µ, σ) such that

πβ(s, a) =

{
1 if a = bβe mod k

0 otherwise.
(1)

Figure 4 presents the results of an experiment conducted on
a [5, 5] instance of the domain. We limit the MCTS algorithm
to 30 iterations per move to simulate an environment in which
the state-space is far greater than what would be computable
given the available resources. Both the mean and standard
deviation are incrementally varied from 0 to 4, and are used
to parameterise a UCT agent. The agent is then tested on
10 000 different instances of the tree.

The results demonstrate that there is room for bettering ran-
dom rollouts. Quite naturally, the performance of the UCT
agent is best when the distribution from which rollout poli-
cies are sampled are peaked about the optimal action. How-
ever, the worst performance occurs when the rollouts have
incorrect bias and are over-confident in their estimation (that
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(a) Expected value under a uniformly ran-
dom policy.
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(b) Expected value under a biased policy.
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(c) Expected value under an inversely-biased
policy.

Figure 3: The view of the overlaid function under the different policies. The expected value is calculated by multiplying the
probability of reaching each leaf by its value.
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Figure 4: Results of rollout policies averaged over 10 000
[5, 5] games. The x and y axes represent the mean and stan-
dard deviation of the rollout policy used by the UCT agent,
while the z-axis denotes the percentage of times the correct
action was returned. The performance of a uniformly ran-
dom rollout policy (which returned the correct move 39.4%
of the time) is represented by the plane, while the red region
indicates policies whose means are more than one standard
deviation from the optimal policy.

is, with small standard deviations), their performance drop-
ping below even that of random. When the rollouts have too
great a variance, their performance degenerates to that of ran-
dom. There is thus only a small window for improvement,
which requires the correct bias and low variance. One should
be certain of the correct bias, however, as the major risk of
failure occurs for low-variance, high-bias distributions.

6 Heavy Rollouts in Non-Smooth Domains
One interesting question is the manner in which the rollouts
allow UCT to handle noise or unexpected encounters in a do-
main. To investigate this, we consider a maze domain with
deterministic transition dynamics in which an agent navigates
a grid (the start and end squares are randomly assigned). A
number of obstacles may be placed on the grid according to
two strategies. The first is to simply place obstacles randomly,
while the second is to form a cluster of obstacles. Infor-
mally, clustered obstacles only affect an isolated region of the
state-space, while the randomly placed ones affect the entire
space. The clustered obstacles therefore create a localised
non-smooth region, whereas the randomly placed obstacles
make the entire space non-smooth.

The agent has four available actions at each state: UP,
DOWN, LEFT and RIGHT. If the agent executes an action that
would cause it to collide with an obstacle or leave the grid, it
then remains in the same state and receives a reward of −10.
An agent receives a reward of 0 if it enters the goal state, and
−1 in all other cases. The value returned by a rollout is calcu-
lated by adding the rewards it receives at each simulated step,
until either the goal state is encountered or the sum becomes
less than −1000. The final sum of rewards is then linearly
scaled to the range [0, 1].

In order to create a policy for this domain, each action is
first assigned a base value of 1. Actions that lead to states
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Figure 5: Results of various rollout policies in a 10× 10 maze
with no obstacles, averaged over 400 different instances of the
domain.

closer to the goal (ignoring obstacles) have some additional
weight added to them. An action is then selected proportion-
ally to its assigned value.

We parameterise the policies by the value that is added to
these actions. For instance, π0 represents a uniformly random
policy, while π∞ is a deterministic greedy policy. We test the
performances of four policies (π0, π1, π5, π∞) in a 10 × 10
grid with no obstacles, 15 obstacles and 15 clustered obsta-
cles, with results presented in Figures 5, 6 and 7 respectively.

With no obstacles, the results are fairly straightforward.
The greedy policy, which in this case is also the optimal pol-
icy, is the most successful, the random the least and the others
in between. When obstacles are added randomly, the situa-
tion changes completely. Since the rollout policies were con-
structed to head towards the goal without knowledge of any
obstacles, their presence damages the performance of UCT.
The worst performing agent in this case is the deterministic
policy, while the more conservatively biased policy is the best
choice. Random also remains unaffected by the obstacles,
with little difference between it and the biased policies.
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Figure 6: Results of various rollout policies in a 10× 10 maze
with 15 obstacles randomly scattered, averaged over 400 dif-
ferent instances of the domain.

When the obstacles are clustered together, they only affect
a single region of the state-space. The results under these con-
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Figure 7: Results of various rollout policies in a 10 × 10
maze with 15 obstacles clustered together, averaged over 400
different instances of the domain.

ditions are therefore not as drastic as the randomly placed ob-
stacles. Although the deterministic policy again suffers some-
what, it is not to the same extent as previously.

These results suggest that the random and more conser-
vatively biased policies are resilient to unexpected events
or noise. Plotting the performance of the policies with
an increase in randomly placed obstacles reveals just that
(Figure 8). Random rollouts are unaffected by the presence
of any number of obstacles, while the dropoff in performance
of the other policies is inversely proportional to their level
of stochasticity. This speaks to the dangers of a high-bias,
low-variance policy. In domains where a good policy cannot
be constructed, these results suggest using a higher-variance
policy to mitigate against any noise or unforeseen pitfalls.
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Figure 8: Results of various rollout policies in a 10 × 10
maze, averaged over 400 different instances of the domain.
Agents were restricted to 2000 iterations per move.

One additional point of interest is the poor initial perfor-
mance of π∞, even when it is indeed the optimal policy.
This occurs because the optimal policy actually provides less
information than the random rollout, which better disam-
biguates the action values. To illustrate, consider a 1 × 5
grid, where the goal state is the rightmost square and the only
available actions are LEFT and RIGHT. Since the values of
states are so close to one another under the optimal policy,
UCT is required to explore for a longer period of time, re-

sulting in poor performance at the beginning. The random
policy, on the other hand, clearly differentiates between ad-
jacent states, allowing UCT to begin exploiting much earlier.
Figure 9 demonstrates this phenomenon.

0.2 0.4 0.6 0.8 1.0

(a) Value of states under a uniformly random policy.

0.92 0.94 0.96 0.98 1.00

(b) Value of states under the optimal policy.

Figure 9: Value of states under uniformly random and optimal
policies, linearly mapped from [−30, 0] to [0, 1]. The differ-
entiation between states under the random policy is clearly
evident, but not so in the optimal policy’s case. Note, too, the
difference in the scales of the figures.

As a final experiment, consider the Taxi domain. Here the
agent has two additional actions (PICKUP and DROPOFF),
which need to be executed at the appropriate state (the agent
incurs a penalty of −10 otherwise). The agent’s aim is to
navigate to some state and execute the PICKUP action, before
proceeding to a final state and executing DROPOFF.

Initially, it may seem as if we can expect similar results,
since this domain can be seen as two sequential instances of
the maze task. However, the key difference is the critical re-
quirement of executing a single action in a single state. Thus
while the obstacles provide some additional difficulty, they
pale in comparison with the bottleneck of having to execute
these critical actions at the correct time.

Adopting the previous approach, Figure 10 illustrates that
the number of randomly placed obstacles has minimal ef-
fect on the lower variance policies when compared with Fig-
ure 8—executing PICKUP and DROPOFF at the proper time
is evidently far more important than the presence of the ob-
stacles.

The domain is therefore indicative of many games where
selecting the correct action at critical times is more important
than playing well at all other times. This also supports the ap-
proach of rollout policies such as that of the Go agent MOGO,
which is hardcoded to make critical moves when necessary,
but plays randomly otherwise [Wang and Gelly, 2007].

7 Conclusion and Future Work
We have shown that the smoothness of a domain is key to
deciding whether to apply the UCT algorithm to the problem.
This supports prevailing theories regarding the reason for its
poor performance in chess, despite its strong showing in Go.

We have also demonstrated that selecting a low-variance
policy can markedly improve the performance of UCT in
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Figure 10: Results of various rollout policies in a 10 × 10
Taxi domain, averaged over 400 different instances of the do-
main. Agents were restricted to 2000 iterations per move.

the correct situation, especially in those situations that re-
quire a critical action to be selected at the correct state,
but can also result in extremely poor performance exacer-
bated by non-smooth domains. In situations of uncertainty,
a higher-variance rollout policy may thus be the better, less-
risky choice. When it comes to learning simulation policies,
this suggests that learning a distribution over policies may be
superior to any kind of pointwise approach.

Future work should also investigate methods and heuris-
tics for quantifying the smoothness of a particular domain.
One approach may be first to construct a game tree using uni-
formly random rollouts. The tree could then be analysed by
estimating the smoothness of sibling nodes’ values through-
out. This can be achieved by assigning a smoothness score to
a node, calculated as a linear combination of the lag-one auto-
correlation of its children’s values and respective smoothness
scores. This value would indicate the smoothness of the tree
(or subtree) and provide information as to UCT’s likely per-
formance beforehand.
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