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Abstract
We propose a new benchmark for planning tasks based on
the Minecraft game. Our benchmark contains 45 tasks over-
all, but also provides support for creating both propositional
and numeric instances of new Minecraft tasks automatically.
We benchmark numeric and propositional planning systems
on these tasks, with results demonstrating that state-of-the-art
planners are currently incapable of dealing with many of the
challenges advanced by our new benchmark, such as scaling
to instances with thousands of objects. Based on these results,
we identify areas of improvement for future planners. Our
framework is made available at https://github.com/IretonLiu/
mine-pddl/.

Introduction
A major challenge in AI is the construction of autonomous
agents capable of solving extremely long-horizon tasks.
While approaches such as reinforcement learning (RL)
struggle with such tasks, especially with sparse feedback,
task-level planners are well-suited to such problems. Ad-
ditionally, these planners are typically domain-independent
and so can be applied to a wide variety of problems, which
is necessary if we desire generally intelligent agents.

However, these approaches require an abstract represen-
tation of a problem (typically using a structured language
such as PDDL (McDermott et al. 1998)) as input. Further-
more, these representations are carefully crafted by a human
designer to contain only the necessary information required
to solve the task (Fishman et al. 2020). If we hope to scale
these approaches to real-world tasks and develop truly au-
tonomous agents, then planners must be capable of operat-
ing in domains that contain a large number of objects that
may or may not be relevant to the task at hand.

While the issue of scaling to large domains is currently
an area of active research (Illanes and McIlraith 2019), cur-
rent planning domains continue to focus on simplified world
models by simply increasing the number of objects present
in standard benchmarks (Silver et al. 2021). This, however,
fails to accurately reflect the difficulty a planner would face
in a noisy real-world task. Additionally, recent work has
demonstrated how PDDL representations can be directly
learned from data (Asai and Fukunaga 2018; James, Ros-
man, and Konidaris 2020; Ahmetoglu et al. 2022; Silver
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Figure 1: A classical planning problem in our benchmark,
requiring the agent to collect the necessary blocks and build
a log cabin (outlined in green). This task contains over 5000
objects that the agent must reason about, including many
that make up the surrounding blocks and ground that are ir-
relevant to the goal.

et al. 2023). While these representations are often sound
(Konidaris, Kaelbling, and Lozano-Pérez 2018), they typi-
cally contain many irrelevant symbols and action operators
(James, Rosman, and Konidaris 2022); planners that are ro-
bust to this issue would further bridge the gap between learn-
ing and planning.

Concurrently, the game of Minecraft has recently emerged
as a promising testbed for RL research (Johnson et al. 2016),
with its open-ended nature serving as a valuable proxy for
the real world. As a domain, Minecraft has several desirable
characteristics for planning research: (a) it supports a wide
variety of tasks in the form of structures that can be assem-
bled, all of which require long-term planning (see Figure 1
for an example); (b) the game is naturally populated by ob-
jects in the form of blocks and items, removing the need
for a human designer to inflate the number of objects in the
domain artificially; and (c) there is an inherent hierarchy in
building large Minecraft structures (Beukman et al. 2023),
which may be of interest to hierarchical planners (Höller
et al. 2020).

In this paper, we present MinePlanner, a long-horizon
planning benchmark in large Minecraft worlds. Our frame-
work is capable of automatically generating tasks and ver-
ifying solutions in Minecraft, and supports both proposi-



tional and numeric planners. We additionally provide a col-
lection of 45 tasks which we used to benchmark representa-
tive propositional and numeric planners. These results show
that there is significant work still left to be done for planning
in large domains with many objects.

Related Work
Minecraft has proven to be a popular testbed for machine
learning research (Johnson et al. 2016). One such plat-
form is MineRL (Guss et al. 2019), which provides a set
of Minecraft-related tasks for the agent to solve. More re-
cently, Fan et al. (2022) incorporate background knowledge
of the game in the form of online documentation, forums
and videos of human gameplay to assist agents in learn-
ing to play the game. In both cases, they typically require
an agent to act in a high-dimensional environment with
partially observable pixel input. These benchmarks require
agents to grapple with multiple problems simultaneously—
high-dimensional function approximation, continuous con-
trol, partial observability and long-term planning. While a
generally capable agent will ultimately be required to solve
all of these problems, it also makes progress along any of
these dimensions difficult to measure. Our proposed bench-
mark abstracts away these low-level intricacies, allowing re-
searchers to focus on what is perhaps the most interesting
aspect of Minecraft—the ability to create impressive struc-
tures, such as entire cities (Salge et al. 2020), through long-
term planning.

Aluru et al. (2015) provide a framework for converting
small, constrained Minecraft problems into object-oriented
MDPs where A* search could be applied. However, only rel-
evant objects were specified, and blocks that constituted the
boundary walls and ground were not explicitly represented.
By contrast, we represent open-world settings as generically
as possible. Wichlacz, Torralba, and Hoffmann (2019) rep-
resent Minecraft construction tasks using PDDL and HTN
formalisms; however, their representation abstracts much of
the low-level complexity of Minecraft, most notably naviga-
tion, effectively treating the problem as a Blocks World. Fi-
nally, Roberts et al. (2017) automatically generate Minecraft
representations using various extensions of PDDL to handle
open worlds and partial observability, but constrain the ob-
servable range to make planning feasible.

One immediate challenge presented by Minecraft is the
number of objects in the world. While previous work has
identified the need to apply planners to domains with hun-
dreds of objects, these domains are either scaled-up versions
of classic problems such as Blocksworld (Silver et al. 2021)
or are created by combining multiple existing planning prob-
lems to introduce irrelevant objects (Fishman et al. 2020).
While these testbeds may be useful for developing better
planning algorithms, the domains are disjoint from those
considered by the RL community, squandering the opportu-
nity for collaboration between the fields. Furthermore, these
approaches may not capture the true complexity of the real
world, which often contains objects and actions that may or
may not be relevant to a given task.

Finally, while our benchmark hopes to spur research in
planning, it can be combined with tools such as PDDLGym

(Silver and Chitnis 2020) to act as a reinforcement learning
environment. This would benefit RL researchers who wish to
focus on the challenging long-term planning problem posed
by Minecraft, while avoiding the complexity of continuous
control in pixel space.

A Framework for Generating Minecraft
Planning Tasks

We now present MinePlanner: a framework for generating
Minecraft planning tasks that makes use of the APIs pro-
vided by MineDojo (Fan et al. 2022). At the highest level,
we define a specification schema for tasks that are used
to generate Minecraft worlds. We next extract objects and
states (such as the agent’s inventory) from the world and au-
tomatically generate a PDDL representation that can be used
by planners. To provide support for multiple approaches,
the framework can generate both numeric and propositional
PDDL. The difference between the two is primarily how lo-
cations are represented, and we discuss this further in subse-
quent sections.

Our framework also supports the verification and visual-
isation of a plan—given the output of a planner, MinePlan-
ner executes the proposed action in the game and verifies
that the necessary predicates are achieved to solve the task.
The frames collected during this process are saved and ex-
ported to video, which can then be used to promote research
in a visually appealing manner. Finally, we provide a utility
for extracting a list of objects, along with their coordinates,
from saved Minecraft worlds1 allowing users to easily spec-
ify new tasks without having to manually list the position of
each object in the world.

Minecraft World Specification
We define a task as a set of blocks and items that are initially
placed in the Minecraft world and the agent’s inventory. For
simplicity, we restrict the items to only those that can be
placed in the world (e.g. wood blocks, but not pickaxes). We
specify the goal of the task as a set of blocks that are to be
placed in the world at some location, a set of items the agent
must have in its inventory, the agent’s location, or any com-
bination of the three. An example of a task specification is
shown in Listing 1, where an agent must place a log at loca-
tion (0, 4, 2) and additionally have at least one log remaining
in its inventory to solve the task.

To produce a tractable representation of a Minecraft
world, we make the following simplifications that vary
slightly from the original game:

• Each task is created using a flat world with a single layer
of grass blocks serving as the ground.

• There are no non-player characters, and items placed in
the world do not despawn.2

• The agent does not require the necessary tools to break
certain blocks. For example, the agent can break a tree
block without an axe.
1Using the PyBlock library (github.com/alex4200/PyBlock).
2Both of these would violate the frame assumption (Pasula,

Zettlemoyer, and Kaelbling 2004).



Listing 1: Example task specification in YAML.
1 name: "Example Problem"
2 blocks:
3 - position:
4 x: ’0’
5 y: ’4’
6 z: ’1’
7 type: obsidian
8 items:
9 - position:

10 x: ’1’
11 y: ’5’
12 z: ’5’
13 quantity: 1
14 type: diamond
15 inventory:
16 - type: log
17 quantity: ’64’
18 - type: obsidian
19 quantity: ’64
20 goal:
21 agent:
22 - position:
23 x: ’6’
24 y: ’4’
25 z: ’-5’
26 blocks:
27 - position:
28 x: ’0’
29 y: ’4’
30 z: ’-2’
31 type: log
32 inventory:
33 - type: log
34 quantity: ’1’

• Broken blocks are immediately added to the agent’s in-
ventory without being dropped on the ground as items.

• The agent is constrained by allowing it to move only one
unit (block) in any cardinal direction at a given time.

State Representations
The types of each object, such as agent, grass-block
or flower, are specified directly by Minecraft itself. To
represent the state of the world, we must keep track of the
location of all items and objects, as well as the agent’s in-
ventory. Using PDDL 2.1 (Fox and Long 2003), this is rela-
tively straightforward: the domain is defined by a predicate
governing whether an object is present in the world (or in
the agent’s inventory), or whether it has been destroyed, and
several numeric fluents that keep track of each object’s x,
y and z positions. Fluents are also used to track how many
items are in the agent’s inventory, since the agent can col-
lect multiple objects of the same type. There is one fluent
for each type present in the world; for example, to track the
number of flowers in the inventory, we would have the fol-
lowing: (agent-num-flower ?ag - agent).

For planners that do not support numeric fluents, we rep-
resent positions and count using predicates only. This is
achieved by defining “integer” objects (e.g., position36,

count0) along with predicates that enforce relationships
between these objects, such as sequentiality ((are-seq
?x1 - int ?x2 - int)) and whether an object is at a
particular location (e.g., (at-x ?l - locatable ?x
- position)). The inventory is represented by determin-
ing whether the count of a particular item matches some
number.3 The predicate equivalent to its numeric counter-
part is (agent-has-n-flower ?ag - agent ?n
- count).

Operator Representations
We model two types of operators in our Minecraft worlds:
movement and interaction actions. Movement involves the
agent navigating one unit in a cardinal direction, and in-
cludes the ability to jump in a particular direction. As in the
game, an agent’s movement is restricted by objects around
it, and the preconditions for movement operators reflect this.

Another challenge in Minecraft is that there is no explicit
action for picking up an item—an agent simply walks over
an item to collect it. To avoid inconsistency between the
PDDL representations and the game, we account for this
by introducing two separate actions for every movement: a
movement action that cannot be executed if the destination
is occupied by an item and an action that combines a move-
ment with a pickup. Additionally, the agent can only move
to a destination above an existing block. The complete list
of movement operators is as follows:

• move [direction]: Moves the agent by one block in
the specified direction. The agent cannot move to a loca-
tion that is occupied by an item. An example of moving
north without collecting an object is given by Listing 2.

• move and pickup [item] [direction]: Moves
the agent by one block in the specified direction and col-
lects an item at the resulting position.

• jumpup [direction]: Moves the agent by one
block in the specified direction and one block along the
positive vertical axis. The agent cannot move into a posi-
tion that is occupied by an item.

• jumpdown [direction]: Moves the agent by one
block in the specified direction and one block along the
negative vertical axis. The agent cannot move into a po-
sition that is occupied by an item.

• jumpup and pickup [item] [direction]:
Moves the agent by one block in the specified direction
and one block along the positive vertical axis and
collects an item at the resulting position.

• jumpdown and pickup [item] [direction]:
Moves the agent by one block in the specified direction
and one block along the negative vertical axis and
collects an item at the resulting position.

The agent is also capable of manipulating blocks, and we
support two such interaction operators:
• place [block] [direction]: Places a block

from the agent’s inventory one block in front of the agent

3Minecraft enforces a maximum inventory count of 64 per ob-
ject, which can be enumerated.



Listing 2: Example of a movement action using fluents
1 (:action move-north
2 :parameters (?ag - agent)
3 :precondition (and (agent-alive ?ag)
4 (exists (?b - block) (and
5 (block-present ?b) (= (x ?b) (x ?ag))
6 (= (y ?b) (+ (y ?ag) -1)) (= (z ?b)
7 (+ (z ?ag) -1)))) (and
8 (not (exists (?b - block) (and
9 (block-present ?b) (= (x ?b) (x ?ag))

10 (or (= (y ?b) (+ (y ?ag) 1)) (= (y ?b)
(y ?ag)))

11 (= (z ?b) (+ (z ?ag) -1)))))
12 (not (exists (?i - item) (and (

item-present ?i) (= (x ?i) (x ?ag))
(= (y ?i) (y ?ag)) (= (z ?i)

13 (+ (z ?ag) -1)))))))
14 :effect (and (decrease (z ?ag) 1))
15 )

Listing 3: Example of an interaction action using predicates
1 (:action break-grass_block-north
2 :parameters (?ag - agent ?b -

grass_block-block ?x - position ?y -
position ?y_up - position ?z -

position ?z_front -
3 position ?n_start - count ?n_end -

count)
4 :precondition (and (agent-alive ?ag) (

at-x ?ag ?x) (at-y ?ag ?y) (at-z ?
ag ?z) (at-x ?b ?x) (at-y ?b ?y) (
at-z ?b ?z_front) (are-seq ?z_front
?z) (are-seq ?y ?y_up)

5 (block-present ?b) (not (exists (?i -
item) (and (item-present ?i)

6 (at-x ?i ?x) (at-y ?i ?y_up) (at-z ?i
?z_front)))) (are-seq ?n_start ?
n_end) (agent-has-n-grass_block ?ag
?n_start)

7 )
8 :effect (and (not (block-present ?b))
9 (not (at-x ?b ?x)) (not (at-y ?b ?y))

(not (at-z ?b ?z_front))
10 (not (agent-has-n-grass_block ?ag ?

n_start))
11 (agent-has-n-grass_block ?ag ?n_end))
12 )

in the specified direction. The agent cannot place a block
in a position that is occupied by another block or item
and there must be a block below the target location.

• break [block] [direction]: Breaks the block
one unit in front of the agent in the specified direction.
The block is collected and added to the agent’s inven-
tory. The agent cannot break a block that has an item on
top of it — in such a case, the agent will first have to
pick the item up and then break the block. An example
of breaking a grass block is given by Listing 3.

Goal Representations
Since Minecraft objects of the same type are interchange-
able, we use existential preconditions when specifying a
goal related to the location of a block. This allows us to
specify that, for example, any wood block should be placed
at a particular location, since all wood blocks are function-
ally identical. However, not all planners provide support
for the exist keyword in the goal specification. To make
our representation as accessible as possible, we introduce
a “virtual” operator called checkgoal whose precondi-
tion is the actual condition for solving the task and whose
effect sets a predicate goal-achieved to true. This is
the only operator that can affect goal-achieved, which
allows us to specify that the goal for all tasks is simply
goal-achieved. For numeric planning, an example of
a task whose goal is to place a planks-block at loca-
tion (0, 4, 2) is given by Listing 4, while Listing 5 shows the
corresponding propositional equivalent.

Listing 4: Example of goal attainment using fluents
1 (:action checkgoal
2 :parameters (?ag - agent)
3 :precondition (and (agent-alive ?ag)
4 (exists (?b - planks-block)
5 (and (block-present ?b) (= (x ?b) 0)
6 (= (y ?b) 4)(= (z ?b) 2))))
7 :effect (and (goal-achieved ?ag))
8 )

Listing 5: Example of goal attainment using predicates
1 (:action checkgoal
2 :parameters (?ag - agent)
3 :precondition (and (agent-alive ?ag)
4 (exists (?b - planks-block) (and
5 (block-present ?b) (at-x ?b position0)
6 (at-y ?b position4) (at-z ?b position2

)))
7 )
8 :effect (and (goal-achieved ?ag))
9 )

Generating Solutions
Since we expect our tasks to be beyond the capabilities of
current planners, we introduce a modification to Minecraft
that allows human experts to play any of the defined tasks
and generate a plan from their actions. The action trace of
the player (consisting of player movements and interactions
with blocks) is logged to a file that is then parsed into a for-
mat suitable for verification in MinePlanner. This subsystem
serves two purposes: (a) it allows us to easily produce at
least one satisficing plan, even in extremely complex tasks,
and (b) it serves as a human benchmark against which the
solutions produced by planners can be compared.

Benchmark Tasks in Minecraft
We create an initial suite of tasks, listed in Table 1, to serve
as challenging problems for current planners. To create a fi-



Task Variant Observation
Range

Inital
Objects

Initial
Predicates

Goal
Pred.

Human Sol.
Length Description

move
Easy (13, 9, 13) 0 762/851 1 5 Navigate to a specific

location.Medium (21, 15, 21) 12 1908/2273 1 11
Hard (71, 31, 71) 1071 23706/29432 1 25

pickup
diamond

Easy (13, 9, 13) 2 767/856 1 6 Navigate and pickup a
single diamond in the world.Medium (21, 15, 21) 8 1893/2254 1 7

Hard (71, 31, 71) 1072 43870/54642 1 23

gather
wood

Easy (13, 9, 13) 1 767/857 1 3 Navigate and pickup a
single log in the world.Medium (21, 15, 21) 6 1881/2240 1 4

Hard (71, 31, 71) 1071 43859/54637 1 5

place
wood

Easy (13, 9, 13) 1 767/856 2 3 Navigate to a specific
location and place a log
from inventory.

Medium (21, 15, 21) 13 1917/2284 2 11
Hard (71, 31, 71) 1071 43863/54626 2 25

pickup
and

place

Easy (13, 9, 13) 1 767/857 1 16 First locate a plank in the
world, then place it at a
specific location.

Medium (21, 15, 21) 16 1926/2296 1 18
Hard (71, 31, 71) 1071 43889/29432 1 42

gather
multi
wood

Easy (13, 9, 13) 3 775/867 1 7 Navigate and pickup a three
logs in the world.Medium (21, 15, 21) 18 1934/2306 1 20

Hard (71, 31, 71) 1071 43865/54627 1 8

climb
Easy (13, 9, 13) 18 825/928 1 7 Place a block at an elevated

y location by climbing a
staircase.

Medium (21, 15, 21) 7 1892/2253 1 39
Hard (71, 31, 71) 18 20387/25308 1 105

cut
tree

Easy (21, 31, 21) 60 2113/2518 1 77 Cut down a tree by
removing its wood.Medium (41, 31, 41) 75 7144/8793 1 295

Hard (65, 31, 65) 946 37080/46137 9 392

build
bridge

Easy (13, 9, 13) 80 773/862 2 7 Build a wooden bridge over
water.Medium (21, 15, 21) 255 1924/2294 4 56

Hard (71, 31, 71) 409 20350/25263 6 65

build
cross

Easy (13, 9, 13) 5 788/882 5 45 Collect blocks to build a
cross shape.Medium (21, 15, 21) 10 1900/2264 5 84

Hard (71, 31, 71) 1071 43854/54627 5 103

build
wall

Easy (13, 9, 13) 9 806/904 9 117 Collect blocks to build a
wall.Medium (21, 15, 21) 16 1927/2298 9 99

Hard (71, 31, 71) 1071 43869/54627 9 102

build
well

Easy (13, 9, 13) 26 876/990 26 226 Collect blocks to build a
well.Medium (21, 15, 21) 36 2010/2400 26 443

Hard (71, 31, 71) 1071 43870/54633 26 420

build
shape

Easy (13, 9, 13) 1 772/861 5 31 Build a variety of shapes
with items from inventory.Medium (21, 15, 21) 12 1923/2288 9 74

Hard (71, 31, 71) 1071 43871/54663 27 138

collect
and build
shape

Easy (13, 9, 13) 5 788/882 5 40 Collect blocks to build a
variety of shapes.Medium (21, 15, 21) 11 1910/2275 11 127

Hard (71, 31, 71) 1071 43864/54647 27 292

build
cabin

Easy (21, 11, 21) 0 1892/2246 116 481
Build a log cabin.Medium (41, 11, 41) 116 7318/9008 116 904

Hard (65, 11, 65) 5019 18201/22583 116 1268

Table 1: A list of tasks provided by MinePlanner and their relevant statistics. Initial Objects does not include the ground (i.e. only
objects explicitly specified in the YAML configuration are included). Initial Predicates is the number of predicates specified in
the initial state of the problem file and is formatted as proposition/numerical. Goal Predicates is the number of goal conditions
specified in the YAML configuration. Human Solution Length refers to the length of a plan constructed from a human expert’s
playthrough when solving the task.



nite representation of a (near infinite) Minecraft world, we
consider only those blocks within some radius of the agent’s
initial location, termed the observation range.4

We define 15 types of tasks, where each task has three dif-
ficulties. Broadly, the easiest version of a task contains only
those blocks necessary to solve the task and also has the
smallest observation range. A medium difficulty task con-
tains more blocks that typically exist in the world, but are
not strictly relevant to the task at hand. Finally, the hardest
version of each task takes place in a “realistic” Minecraft
setting with a much larger observation range. The difference
between difficulties is illustrated by Figure 2.

Experiments

We first benchmark Fast Downward (Helmert 2006), a
propositional planner with the LAMA configuration, and
ENHSP-20 (Scala et al. 2020), a numerical planner with A*
search and the AIBR heuristic (Scala et al. 2016), on the
tasks provided by MinePlanner. All experiments were con-
ducted using Apptainer (Kurtzer, Sochat, and Bauer 2017)
on a cluster of AMD Ryzen 9 7900X3D CPUs, using 128
virtual cores and 250GB of RAM per trial. We record plan-
ning time, including the amount of time spent preprocess-
ing the PDDL file by each planner. For Fast Downward, this
refers to the time taken to translate PDDL to SAS, while for
ENHSP, this measures grounding. We set a timeout limit of
two hours for each task, since an autonomous agent must ul-
timately be capable of planning in large environments within
a reasonable timeframe. Results are reported in Table 2, with
the means over five runs reported.5

Domain-Independent Planning Results

The results indicate that the majority of tasks could not be
solved by either planner. The translation step of Fast Down-
ward was particularly problematic, with most of the tasks ex-
hausting all memory before the file was translated to SAS.
However, for those tasks where translation was successful,
the subsequent search procedure was extremely fast (taking
a few seconds at most). To investigate this behaviour, we
conduct a further experiment using the move task. We begin
with the Easy variant, and then incrementally scale the size
of the world until Fast Downward fails to translate. These
results, shown in Figure 3, how translation time scales expo-
nentially as the size of the world increases. This is a worry-
ing trend, despite the linear search time, as it indicates that
Fast Downward does not scale well with the number of ob-
jects in the world.

By contrast, ENHSP-20 is capable of grounding almost all
of the problems, but fails to find a successful plan for most.
For tasks that were successfully solved, planning is signifi-
cantly slower than Fast Downward, illustrating the tradeoff
between the two.

4The agent is centred in the observation range.
5For readability, we include only the means here, but report the

full table along with standard deviations in the appendix.

(a) Easy variant

(b) Medium variant

(c) Hard variant

Figure 2: Three variants for the task of navigating to a partic-
ular location. (a) The easy task contains no irrelevant blocks,
and so the world is empty. (b) The medium contains a few
additional blocks which serve as obstacles and make naviga-
tion more challenging. (c) The hard task requires navigating
within a small village consisting of hundreds of objects that
are irrelevant for this particular task.

Automatically Removing Irrelevant Objects
Given the issues caused by the number of objects in the
world, it is natural to wonder whether many of these objects
are irrelevant and can be pruned. We therefore apply task
scoping, a recently introduced algorithm for preprocessing a
PDDL file to remove provably irrelevant objects and opera-
tors, which has been shown to produce significant speedups
in classic problems (Fishman et al. 2020). We apply this pre-
processing step on the numeric domains that failed to plan in
a reasonable amount of time. We select these tasks, since (a)
task scoping requires the problem to first be preprocessed, so
any tasks that could not complete the grounding step cannot



Task Variant FastDownward ENHSP
Transl. (s) Search (ms) Total (s) Ground (s) Search (ms) Total (s)

move
Easy 29.55 9.05 29.80 9.75 21.60 25.19

Medium — — — 49.05 > 7.2e6 > 7.2e6
Hard — — — — — —

pickup
diamond

Easy 242.85 172.88 246.46 9.28 7.15e6 7.19e6
Medium — — — 48.18 > 7.2e6 > 7.2e6

Hard — — — — — —

gather
wood

Easy 248.96 511.03 251.35 7.42 4 352.49 4 382.79
Medium — — — 47.32 > 7.2e6 > 7.2e6

Hard — — — — — —

place
wood

Easy 608.85 85420 973.33 7.53 > 7.2e6 > 7.2e6
Medium — — — 49.83 > 7.2e6 > 7.2e6

Hard — — — — — —

pickup and
place

Easy 597.39 525235 1134.46 7.36 > 7.2e6 > 7.2e6
Medium — — — 50.23 > 7.2e6 > 7.2e6

Hard — — — — — —

gather multi
wood

Easy — — — 7.62 > 7.2e6 > 7.2e6
Medium — — — 50.19 > 7.2e6 > 7.2e6

Hard — — — — — —

climb
Easy — — — 8.70 > 7.2e6 > 7.2e6

Medium — — — 48.71 > 7.2e6 > 7.2e6
Hard — — — — — —

cut
tree

Easy — — — 60.35 > 7.2e6 > 7.2e6
Medium — — — — — —

Hard — — — — — —

build
bridge

Easy — — — 13.38 > 7.2e6 > 7.2e6
Medium — — — 57.10 > 7.2e6 > 7.2e6

Hard — — — — — —

build
cross

Easy — — — 8.31 > 7.2e6 > 7.2e6
Medium — — — 48.34 > 7.2e6 > 7.2e6

Hard — — — — — —

build
wall

Easy — — — 8.48 > 7.2e6 > 7.2e6
Medium — — — 50.43 > 7.2e6 > 7.2e6

Hard — — — — — —

build
well

Easy — — — 10.74 > 7.2e6 > 7.2e6
Medium — — — 54.40 > 7.2e6 > 7.2e6

Hard — — — — — —

build
shape

Easy — — — 8.06 > 7.2e6 > 7.2e6
Medium — — — 51.70 > 7.2e6 > 7.2e6

Hard — — — — — —

collect and
build shape

Easy — — — 8.19 > 7.2e6 > 7.2e6
Medium — — — 51.10 > 7.2e6 > 7.2e6

Hard — — — — — —

build
cabin

Easy — — — — — —
Medium — — — — — —

Hard — — — — — —

Table 2: The running times for Fast Downward and ENHSP-20 when run on the MinePlanner task suite. No result could be
obtained for results marked as — because the planner failed to translate (in the case of Fast Downward) or ground (for ENHSP-
20). Entries marked > 7.2e6 indicate that the planner timed out.



(a) Translation time for increasing world size.

(b) Planner search time for increasing world.size

Figure 3: The translation and planner search time is shown
for the move task, starting from the size of the easy vari-
ant, and increasing until the FastDownward Planner can no
longer translate the problem. The solid line and shaded areas
represent the mean and standard deviation over five runs.

be scoped using this method, and (b) the removal of irrele-
vant objects should improve planner performance.

Unfortunately, our results indicate that the scoped envi-
ronments have no effect on the final run time of the plan-
ner. Table 3 reports the average number of objects, actions
and grounded actions removed across all tasks. In particu-
lar, task scoping fails to realise any advantages in the easy
and medium task variants, since it considers the entire do-
main to be relevant and only removes grounded actions. We
might expect to see gains for the hard variants, as they in-
clude many irrelevant objects. However, because the algo-
rithm first requires that the problem be grounded, task scop-
ing cannot be applied to these problems.

Lifted Planning
Since grounding tasks in MinePlanner has shown to be prob-
lematic, we also investigate whether planners that operate
directly on the lifted representation could prove to be a solu-
tion. To this end, we attempt to run the Powerlifted planning
system (Corrêa et al. 2020) in its recommended satisficing

Actions
Removed

Objects
Removed

Grounded Actions
Removed

0± 0 0± 0 1009.25± 426

Table 3: The number of actions, objects and grounded ac-
tions removed by the task scoping algorithm. Results are av-
eraged across all tasks in which the numeric planner failed
to plan in a reasonable amount of time, with mean and stan-
dard deviation reported.

configuration on our problems.6 This requires creating mod-
ified versions of all the operators in our domains to remove
negations and existentials from the preconditions.

We found that Powerlifted quickly exhausts all 250GB of
RAM during search on all of the easy variants of our tasks.
As such, the planner is unable to find a solution to any of our
tasks. This finding suggests that our tasks present significant
challenges beyond existing benchmark problems for lifted
planning (e.g. Lauer et al. (2021)), which Powerlifted is able
to largely solve. Studying the source of the significant mem-
ory requirements for lifted planning in our problems could
provide useful directions for future planning research.

Conclusion
We presented MinePlanner—a framework for generating
Minecraft tasks in PDDL that can serve as challenging do-
mains for classical planners. We also proposed a set of 45
initial tasks, varying in difficulty, and benchmarked two
domain-independent planners on these domains. The results
indicated that there is still a significant technical gap to over-
come to solve these large problems, with no planner capable
of solving any of the hard tasks.

One future direction is to leverage modern computing
clusters to solve these challenging tasks, as has been done
for previous “grand challenges” (Silver et al. 2016). How-
ever, at present, there are several issues that prevent the full
utilisation of our hardware. While planners like ENHSP-
20 could potentially benefit from parallelisation, especially
due to their long search times, they are also not able to
ground larger problems despite being provided with 250GB
of RAM. Similarly, the tasks Fast Downward failed to com-
plete were due to the high memory requirements needed dur-
ing the translation phase. Modern planners will require more
than parallelisation to scale effectively to object-dense envi-
ronments.

If we wish to apply planning in realistic domains, we re-
quire planners that can operate within these object-dense en-
vironments in a reasonable amount of time, using a reason-
able amount of memory. We hope that our benchmark will
serve as a catalyst for developing new approaches to plan-
ning in complex domains, and form a bridge between the
learning and planning communities.

6We also attempted to run QPlanner (Shaik and van de Pol
2021), but it was unable to parse and begin searching on even our
easiest tasks.
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Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino,
H.; Pellier, D.; and Alford, R. 2020. HDDL: An exten-
sion to PDDL for expressing hierarchical planning prob-
lems. In AAAI Conference on Artificial Intelligence, vol-
ume 34, 9883–9891.
Illanes, L.; and McIlraith, S. 2019. Generalized planning via
abstraction: arbitrary numbers of objects. In AAAI Confer-
ence on Artificial Intelligence, volume 33, 7610–7618.
James, S.; Rosman, B.; and Konidaris, G. 2020. Learning
portable representations for high-level planning. In Interna-
tional Conference on Machine Learning, 4682–4691.
James, S.; Rosman, B.; and Konidaris, G. 2022. Au-
tonomous learning of object-centric abstractions for high-
level planning. In International Conference on Learning
Representations.
Johnson, M.; Hofmann, K.; Hutton, T.; and Bignell, D. 2016.
The Malmo Platform for Artificial Intelligence Experimen-
tation. In Proceedings of the 25th International Joint Con-
ference on Artificial Intelligence, 4246–4247.

Konidaris, G.; Kaelbling, L. P.; and Lozano-Pérez, T. 2018.
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Scala, E.; Haslum, P.; Thiébaux, S.; and Ramirez, M. 2020.
Subgoaling techniques for satisficing and optimal numeric
planning. Journal of Artificial Intelligence Research, 68:
691–752.
Shaik, I.; and van de Pol, J. 2021. Classical Planning as QBF
without Grounding. arXiv preprint arXiv:2106.10138.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of Go with deep neural networks and tree search. Na-
ture, 529(7587): 484–489.
Silver, T.; and Chitnis, R. 2020. PDDLGym: Gym Environ-
ments from PDDL Problems. In International Conference
on Automated Planning and Scheduling PRL Workshop.
Silver, T.; Chitnis, R.; Curtis, A.; Tenenbaum, J. B.; Lozano-
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Appendix
A. Full Results
In Table 2, we benchmarked Fast Downward and ENHSP-20 on the tasks provided with MinePlanner. Table 4 below extends
these results by reporting both the means and standard deviations over 5 runs. All experiments were conducted using Apptainer
(Kurtzer, Sochat, and Bauer 2017) on a cluster of AMD Ryzen 9 7900X3D CPUs, using 128 virtual cores and 250GB of RAM.
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Table 4: The running times for Fast Downward and ENHSP-20 when run on the MinePlanner task suite. For results marked as
—, no result could be obtained because the planner failed to translate (in the case of Fast Downward) or ground (for ENHSP-
20). Entries marked > 7.2e6 indicate that the planner timed out. Means and standard deviations over 5 runs are reported.


